Dynamic finite element analysis of impulsive stress waves propagating from distal end of femur.
نویسندگان
چکیده
The human femur is subjected to an impulsive load at its distal end during daily life. Femoral bone fracture caused by impact loading is common in elderly women. It is important to clarify the dynamic response of the femur and to evaluate the change in its stress state during impact loading. A 3-dimensional model of the femur was prepared in the present study, and the impulsive stress waves propagating from the distal end of the femur were analyzed by the dynamic finite element method. This model showed that the von Mises equivalent stress is large on the anterior and posterior sides of the mid-diaphysis when the impact direction is different from that of the bone axis. As for the femoral neck, the absolute value of minimum principal stress initially increases on the medial side;slightly later the maximum principal stress increases on the lateral side. In this case, the absolute value of the maximum principal stress was found to be larger than that of the minimum principal stress, and the absolute value of the principal stress decreased as the impact angle increased. Further, the femoral neck and the trochanter were shown to have a higher risk of bone fracture when the impact direction is coincident with the bone axis.
منابع مشابه
Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions
Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...
متن کاملStudy on Fundamental Frequencies of Cylindrical Storage Tanks Obtained from Codes and Finite Element Method
In the case of study on the seismic behavior of tanks, one of the most important subjects is selection of convective and impulsive frequencies for storage tanks. These two frequencies are defined by Housner. The major utility of these frequencies is for Rayleigh damping which is a must for time history analysis. API 650, EUROCODE 8 have suggested some analytical solutions for finding convective...
متن کاملAn investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study
Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...
متن کاملEffect of pontic width on stress distribution in abutment teeth and their supporting structures by finite element analysis
Effect of pontic width on stress distribution in abutment teeth and their supporting structures by finite element analysis Dr. J. Ghanbarzadeh* - Dr. MR. Sabooni* - Dr. M. Keshavarz** * Assistant Professor of Dental Prostheses Dept., Faculty of Dentistry, Mashhad University of Medical Sciences. ** Assistant Professor of Dental Prostheses Dept., Faculty of Dentistry, Kerman University of Medical...
متن کاملHigh Frequency Waves Propagating in Octagonal Bars: a Low Cost Computation Algorithm
In this paper a hybrid semi-analytical Finite Element formulation is proposed to efficiently calculate the time dependent response due to stress waves propagating in a slender solid with uniform cross-section when excited by impulsive forces. The formulation takes advantage of the direct and inverse Fourier transform to formulate and solve the governing wave equation. The framework is applied t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta medica Okayama
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2012